Math-in-CTE Lesson Plan Template

Lesson Title: DC series and parallel circuits		Lesson # 13
Author(s):Jose A. Larrinaga	Phone Number(s):	E-mail Address(es):
	305-822-1500 ext	jlarrinaga@dadeschools.net
	2415	
Juan M. Gonzalez	305-822-1500 ext	
	2452	
Occupational Area: Engineering Technology/Drafting		

Occupational Area: Engineering Technology/Drafting

CTE Concept(s): DC series and parallel circuits

Math Concepts: Adding Fractions

Lesson Objective: The student will be able to work with analyze series, parallel, and series -parallel DC circuits.

Supplies Needed: paper, calculators, and optional computer stations

THE "7 ELEMENTS"	TEACHER NOTES (and answer key)	
1. Introduce the CTE lesson.	1. Amperes(A): a unit of electric currents	
Lesson induction questions:	2. Circuit: The conducting part, or a system of conducting parts, through which an electrical current passes.	
Through question probing, assess students' math awareness as it relates to		
CTE topic.	3. Current (I): The transfer of an electric charge	
Why is it that in Christmas Tree when one light bulb in the wire does not work the	through a material. Current is measured in amperes.	
rest of lights in that wire do not work	4. Ohm (Ω) : A unit of resistance.	
vocabulary: amperes, circuit, current, ohms, parallel, resistor, series, volts, voltage source, watts, wire	5. Parallel circuit: A method of connecting a circuit so that the current has two or more paths to follow.	
	6. Resistor: A device that opposes the flow of an electric current. It is used for protection operation or current control.	
	7. Series circuit: A method of connecting a circuit so that the current has one path to flow.	
	8. Volt (V): A unit of electrical potential or pressure.	
	9. Voltage (E): The electromotive force or electrical pressure. It is expressed in volts.	
	10. Watts (W): A unit of power.	
	11. Wire: A metal chord that connects electrical components.	

2. Assess students' math awareness as it relates to the CTE lesson.	FRACTIONS QUIZ.doc	
How do you add and divide		
fractions?		
3. Work through the math example embedded in the CTE lesson.	The Series Circuit.mht	
	Batteries and Bulbs as DC Circuit Example.mht	
	Students will transform circuit formulas to obtain parallel and series circuits results.	
4. Work through <i>related, contextual</i> math-in-CTE examples.	file 13 information CTE\Electrical Circuits - Series and Parallel Circuits, Ohms Law.mht	
$R_T = R_1 + R_2 + R_3 + + R_L$	Series	
T= total resistance	R_1	
L = Last resistor	1 2	
$R_P = 1/R_1 + 1/R_2 + 1/R_3 + \dots + R$	+	
	$\equiv \downarrow$ $\uparrow \geqslant R_2$	
	-T ' ' ſ	
	4 3	
	R_3	
	Parallel	
	1 2 3	
	$=$ \uparrow	
	8 7 6	

5. Work through <i>traditional math</i> examples.	Fraction Addition and Division.doc
See attached document Fraction Addition and Division.doc.	
6. Students demonstrate their understanding.	The students will demonstrate that they will be able to calculate the equivalent resistance of series and parallel circuits by mastering the basic arithmetic of fraction addition and division
7. Formal assessment.	Series and Parallel Quiz.doc
The format assessment will include in CTE series and parallel circuits.	

Student Name:	Period:	Date:
~ to ordin 1 (to 1110)	1 110 4.	

Add the following fractions and simplify:

1)
$$1/3 + 2/3 =$$

$$2) 2/5 + 1/5 =$$

3)
$$1/6 + 2/6 =$$

Find the least common multiple for the following pairs of numbers:

- 4) 2:
 - 4:
- 5) 2:
 - 3:
- 6) 6:
 - 8:

Find the least common denominators, then add and reduce the fractions:

8)
$$3/2 + 2/3 = 9$$
) $3/8 + 5/6 =$

9)
$$3/8 + 5/6 =$$

Divide and simplify

10)
$$2/3 / 1/6 =$$
 11) $1 / 2/5 =$ 12) $1 / (1/2 + 1/3) =$

Student Name: Period	l: Date:
----------------------	----------

- 1) 1
- 2) 3/5
- 3) 1 / 2
- 4) 4
- 5)6
- 6) 24
- 7) 1
- 8) 13/6
- 9) 58/24 = 29/12
- 10) 4
- 11) 5/2
- 12) 6/5

Student Name:	Period:	Date:
Diadoni Tianio.	1 0110 01	B 410:

Add the following fractions and simplify:

1)
$$1/3 + 2/3 =$$

Find the least common multiple for the following pairs of numbers:

- 4) 2:
 - 4:
- 5) 2:
 - 3:
- 6) 6:
 - 8:

Find the least common denominators, then add and reduce the fractions:

7)
$$2/4 + 1/2 =$$

8)
$$3/2 + 2/3 =$$

8)
$$3/2 + 2/3 = 9$$
) $3/8 + 5/6 =$

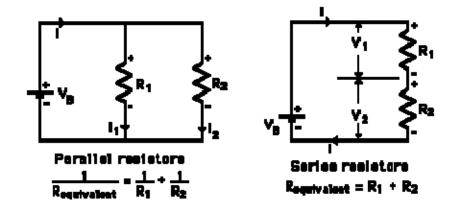
Student Name:	Period:	Date:
Diadoni Tianio.	1 0110 01	B 410:

- 1) 1
- 2) 3/5
- 3) 1 / 2
- 4) 4
- 5) 6
- 6) 24
- 7) 1
- 8) 13/6
- 9) 58/24 = 29/12

FRACTIONS QUIZ

Add and simplify

Divide and simplify


FRACTIONS QUIZ

ANSWERS:

- 1) 2
- 2) 11/4
- 3) 31/6
- 4) 7/ 12
- 5) 2/3
- **6) 7/2**

Series and Parallel Circuit Quiz

Example

- 1. If in the series circuit $R1=10~\Omega$ and $R_2=10\Omega$. What is $R_{equivalent}$?
- 2. If in the series circuit R1 =1000 Ω and R₂= 0Ω . What is R_{equivalent}?
- 3. If in the series circuit $R1 = 150 \Omega$ and $R_2 = 200\Omega$. What is $R_{equivalent}$?
- 4. If in the series circuit $R1 = 1k \Omega$ and $R_2 = 10\Omega$. What is $R_{equivalent}$?
- 5. If in the series circuit $R1=189~\Omega~$ and $R_2\!\!=234\Omega$. What is $R_{equivalent}\,?$
- 6. If in the parallel circuit $R_1 = 100 \Omega$ and $R2 = 100\Omega$. What is $R_{equivalent}$?
- 7. If in the parallel circuit R_1 =200 Ω and R2=300 Ω . What is $R_{equivalent}$?
- 8. If in the parallel circuit $R_1 = 1k \Omega$ and $R2 = 2k\Omega$. What is $R_{equivalent}$?
- 9. If in the parallel circuit $R_1 = 1k \Omega$ and $R2 = 5\Omega$. What is $R_{equivalent}$?
- 10. If in the parallel circuit $R_1 = 5\Omega$ and $R2 = 600\Omega$. What is $R_{equivalent}$?

Student Name:	Period:	Date:
	Series and Parallel Circui	
Answer Sheet		
1. 20 Ω		
2. 1000Ω or $1 k \Omega$		
3. 350 Ω		
4. 1010 Ω		
5. 423 Ω		
6. 50 Ω		
7. 120 Ω		

8. 2000/3 Ω or \approx 666.67 Ω

9. $1000/201 \Omega$ or $\approx 4.98 \Omega$

10. $600/121 \Omega$ or $\approx 4.96 \Omega$